7-Minuten-Pitch

Zertifizierte Betriebssysteme auf Mikrokern-Basis für Hochsicherheitsanwendungen

Thomas Günther, INFODAS GmbH, Köln
Dr. Michael Hohmuth, Kernkonzept GmbH, Dresden

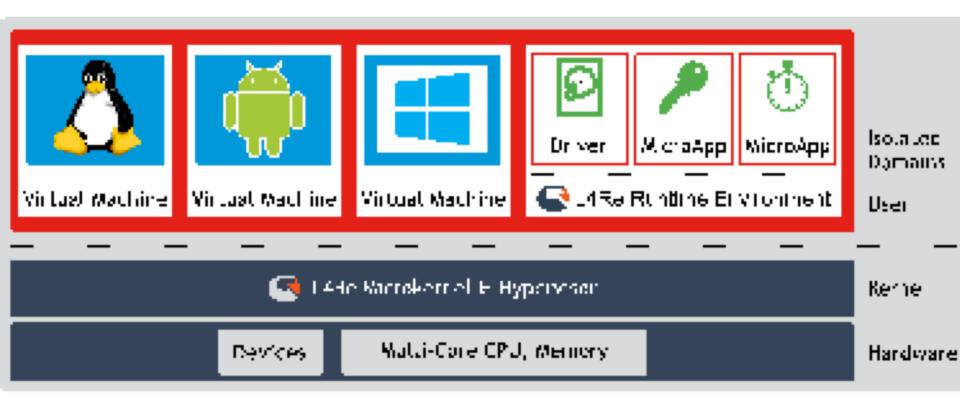
Hochsicherheitsanwendungen: Anwendungsbeispiele

- Sichere, bidirektionale Netzübergänge
- Netzwerkdioden
- Firewalls
- Labelling-Dienste
- Elektronische VS-Registraturen
- Virenschutzsysteme, IDS, IPS
- Anwendungen in kritischen Infrastrukturen

Hochsicherheitsanwendungen haben sehr spezielle Anforderungen

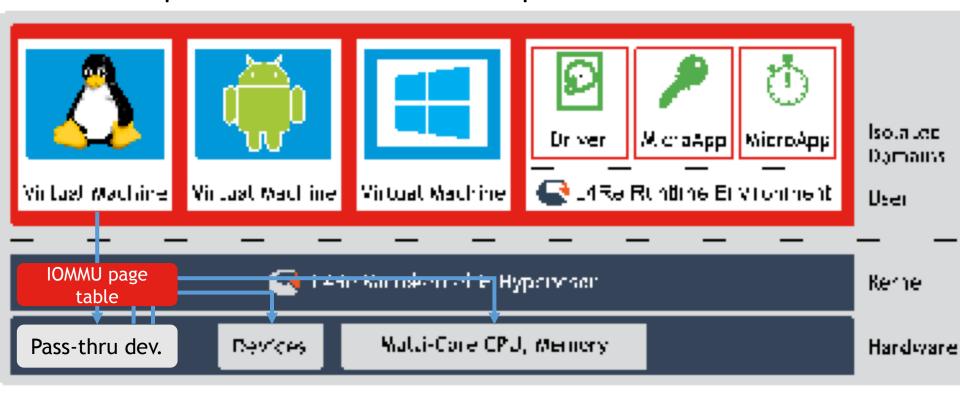
- Hohe Anforderungen an
 - Hardware und Kryptographie,
 - Selbstschutz- und Selbsttests,
 - Robustheit gegen physische Angriffe, etc.
- Zusätzliche, herausfordernde Anforderung:

"Vertrauenswürdige Ablaufplattform" für sicherheitskritische Anwendungen


- Nachweis der sicherheitstechnischen Funktionsweise
- Separierungs- und Isolierungsmechanismen (dienen auch dem Selbstschutz)
- Überwachung der Kommunikation
 - zwischen Prozessen untereinander
 - zwischen Prozessen und Hardware
- Kombination aus Hardware und Betriebssystem bildet die "Vertrauenswürdige Ablaufplattform"

ACHTUNG! Hardware ist üblicherweise nicht vertrauenswürdig!

SDoT MOS: Evaluierbarkeit



- Microkernel garantiert Isolation
- Kleine Trusted Computing Base für Sicherheitsfunktion
- Virtuelle Maschinen mit Standard-Systemsoftware

SDoT MOS: Separierung von Hardware-Komponenten und Peripherie

Verhinderung unbeschränkter DMA-Zugriffe

SDoT MOS: Sichere, aber flexible Kommunikation

- Anwendungsvielfalt und Flexibilität
 - Kommunikationsverfahren: Virtuelles Netzwerk, Sockets, Shared Memory, Microkernel-IPC
- Herausforderung: Zertifizierbarkeit der Plattform
 - Keine Weitergabe von Zugriffsrechten möglich
 - Kommunikationsmechanismus hat keinen Zugriff auf Anwendungsspeicher
- Lösung in SDoT MOS: Pure Channels
 - Eigenschaft für Kommunikationsmechanismen
 - Separat oder mit Anwendung zertifizierbar
 - "Pure Channel" Linux-Sockets bereits enthalten

Fazit

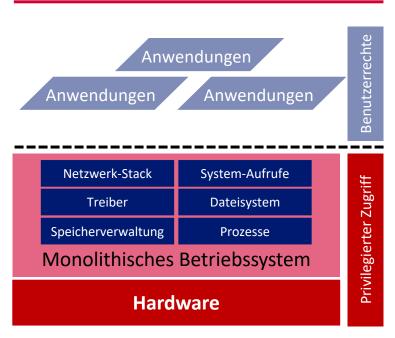
 Security Appliances benötigen eine sichere und vertrauenswürde Ablaufplattform

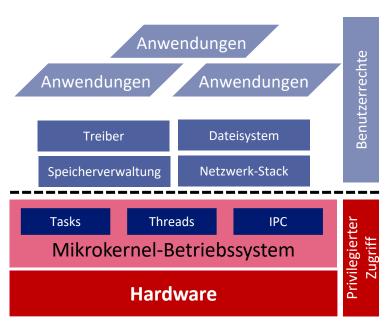
 SDoT MOS erfüllt die Anforderungen an Evaluierbarkeit

• SDoT MOS ist für zukünftige, sicherheits-kritische Anwendungen eine geeignete Basis.

Vielen Dank für Ihre Aufmerksamkeit.

Mehr an unserem Stand...!


Backup


Mikrokern schränkt privilegierten Zugriff auf Hardware stark ein

Monolithisches Betriebssystem

- Treiber, Speicherverwaltung und Dateisystem sind Bestandteil des Betriebssystem und haben vollen Zugriff auf die Hardware
- Nur End-Anwendungen laufen mit eingeschränkten Rechten

Mikrokernel-Betriebssystem

- Nur minimalistischer Betriebssystem-Kern mit vollen Rechten
- Viele Betriebssystem-Dienste haben nur eingeschränkte Benutzerrechte
- Definierte Schnittstellen

Sicherheitstechnische Anforderungen an ein zertifizierungsfähiges Betriebssystem

- Separierung von Prozessen
 - Virtuelle Speicherverwaltung
 - Zugriffsschutz auf Kernobjekte des Betriebssystems
 - Kontrolle der Inter-Prozess- und Inter-Kompartment-Kommunikation
- Separierung von Hardware-Komponenten
 - Kompartments erhalten eingeschränkten Zugriff auf Hw
 - Keinerlei Zugriff auf nicht zugewiesener Hw
- Unterstützung eines sicheren Bootens
 - Nachweis der Korrektheit der geladenen Anwendung
 - Verhinderung der Ausführung von Fremdcode während des Bootprozesses

Evaluierbarkeit durch Mikrokern

 Kleiner Anteil des Betriebssystems läuft im "privilegierten" Modus des Prozessors

Reduktion auf das absolute Minimum

 Grundsätzliche Evaluierbarkeit aufgrund der geringen Lines of Code möglich

